
Software Reuse
in Safety-Critical Systems

Barbara Lingberg
Leanna Rierson
May 22, 2003

Acronyms

• AC Advisory Circular
• CAST Certification Authorities Software Team
• CNS Communication-Navigation-Surveillance
• COTS Commercial-off-the-shelf
• CSTA Chief Scientific and Technical Advisor
• FAA Federal Aviation Administration
• IEEE Institute of Electrical and Electronics Engineers
• IMA Integrated Modular Avionics
• OOT Object-oriented Technology
• OS Operating System
• RTOS Real-Time Operating System
• TSO Technical Standard Order

Overview

• Software Reuse:
What It Is, Is Not, and Its Goal

• Benefits/Risks/Myths of Software Reuse
• Software Assurance in Civil Aviation
• Approaches to Software Reuse
• FAA Activities Related to Software Reuse
• Summary

Software Reuse:
What It Is

• Process of creating software systems
from existing software assets, rather
than building software systems from
scratch (Krueger)

Software Reuse:
What It Is (cont)

• Assets can be software components,
objects, software requirement analysis
and design models, domain architecture,
database schema, code documentation,
manuals, standards, test scenarios, and
plans (Sodhi)

• May occur within a software system,
across similar systems, or in widely
different systems (Sodhi)

Software Reuse:
What It Is Not

• Software Reuse != Software Salvaging
(Adolf)

Software reuse is software that is designed
to be reused
Software salvaging is using software that
was not designed for reuse

Software Reuse:
Its Goal

• From previous development efforts
Use as much software data as possible

To reduce time, cost, and risks associated
with re-development

Benefits of Software Reuse

• Meeting business needs
• Higher productivity
• Increased quality
• Quicker time to market
• Better use of resources
• Helps with system complexity issues

Risks of Software Reuse

• Requires upfront investment
• Is a gamble on the future
• Can end up costing more
• Can induce errors
• Must be used cautiously in

safety-critical domains

Myths of Software Reuse

• Reuse is quick, easy, simple, & free
• Buying components means no building
• Components = reuse
• Reuse is only for code
• Maintenance != Development so reuse

does not apply in maintenance
• Increased productivity means loss of jobs

Software Assurance
in Civil Aviation

• RTCA/DO-178B “Software Considerations in
Airborne Systems and Equipment Certification” is
“defacto” guidance document

• Focuses on software aspects of system
development

• Identifies software levels and objectives based
on software contribution of failure conditions

• Used in aviation, CNS systems, military systems,
medical equipment

• Reuse approaches evaluated against RTCA/DO-
178B objectives

Approaches to Software Reuse

• Planning for Reuse
• Domain Engineering
• Software Components
• Object-Oriented Technology
• Portability
• Commercial-off-the-shelf (COTS) Software
• Product Service History

Approaches to Software Reuse:
Planning for Reuse

• Reuse doesn’t just happen – requires
planning, management, and execution

• Planning should address:
Process for Reuse
Safety
Integration - Software/Software and
Software/Hardware
Portability
Maintenance
Re-Verification

Approaches to Software Reuse:
Planning for Reuse (cont)

• Keys to Success (McConnell)
Take advantage of personnel continuity between old
and new programs
Do not overestimate savings
Secure long-term, high-level management commitment
to a reuse program
Make reuse an integral part of the development process
Establish a separate reuse group
Focus on small, sharp, domain-specific components
Focus design efforts on abstraction & modularity

Approaches to Software Reuse:
Domain Engineering

• Definition: Process of creating assets that
can be managed and reused through

Domain analysis
Domain design
Domain implementation

• Domain is a group or family of related
systems. All systems in that domain share
a set of capabilities and/or data. (Sodhi)

• Domain engineering is a relatively
immature field

Approaches to Software Reuse:
Domain Engineering (cont)

• Offers greatest potential for productivity
and quality gains through:

Knowledge reuse
Reuse of architectural domain knowledge
Repositories of components e.g., general-
purpose libraries of software architectures
Reuse of software designs and patterns
Reduction of “cognitive distance”

Approaches to Software Reuse:
Software Components

• What is a Software Component?
Prewritten elements of software with clear
functionality and well-defined interface
(Rhodes)
Software code and supporting RTCA/DO-178B
documentation being considered for reuse.
Forms a portion of the software that will be
implemented by the integrator/applicant.
(FAA Draft Advisory Circular)

Approaches to Software Reuse:
Software Components (cont)

• Qualities (Meyer)
Careful specification of functionality & interface
Correctness - works as specified
Robustness - doesn’t fail if used properly
Ease of identification
Ease of learning
Wide-spectrum of coverage
Consistency
Generality - useful for multiple environments

• Examples
Real-time Operating System (RTOS)
Software Libraries

Approaches to Software Reuse:
Software Components (cont)

• Safety Concerns
Planning
Requirements Traceability
Re-verification
Interface documents
Partitioning/protection
Artifacts
Maintenance
Unused code

Approaches to Software Reuse:
Object-Oriented Technology

• Definition: A software development
technique in which a system or
component is expressed in terms of
objects and connections between those
objects (IEEE)

• Centered around “classes” and “objects”
Class: set of objects that share a common
structure and a common behavior (Booch)
Object: instance of a class

Approaches to Software Reuse:
Object-Oriented Technology (cont)

• Benefits for Reuse
Breaks complex systems into manageable pieces
Easier to implement OO design into code
Supports use of development tools

• Safety Concerns
Dead/Deactivated Code
Dynamic Binding/Dispatch
Encapsulation
Inheritance
Polymorphism

Approaches to Software Reuse:
Portability

• Goal: Transport software to new
platforms and/or environments
with minimal adaptation

Approaches to Software Reuse:
Portability (cont)

• Strategy:
Identify minimum necessary set of
environmental requirements & assumptions
Eliminate all unnecessary assumptions
throughout the design
Identify specific environment interface required
Anticipate need to “bridge the gap” for
environments which don’t meet interface
assumptions

Approaches to Software Reuse:
Portability (cont)

• Concerns include:
Operating System inconsistencies
Different compiler options/effects
Incompatible libraries
Run-time problems
Underestimation of integration effort
Architectural inconsistency

Approaches to Software Reuse:
Commercial off the Shelf (COTS)

• Definition:
Commercially available applications sold by
vendors through public catalog listings.
COTS software is not intended to be
customized or enhanced.
Contract-negotiated software developed for
a specific application is not COTS software
(RTCA/DO-178B)

• Common uses:
Operating systems (OS)
Real-time operating systems (RTOS)

Approaches to Software Reuse:
COTS (cont)

• Concerns of COTS OS include:
Integrity of design and implementation may be
unknown
Unknown functionality and side effects may exist
Negative effect on operation of other software
applications executing using OS functions
Mitigation approaches may themselves be
implemented in COTS operating system’s
environment
Unknown errors may exist
Difficulty in satisfying DO-178B objectives
Patches may have safety impact

Approaches to Software Reuse:
Product Service History

• Definition: Contiguous period of time
during which the software is operated
within a known environment, and during
which successive failures are recorded
(RTCA/DO-178B)

• Purpose is to gain confidence in software
over a period of time

Approaches to Software Reuse:
Product Service History (cont)

• Considerations:
Configuration management of the software
Effectiveness of problem reporting
Stability and maturity of the software
Relevance of product service history
environment
Actual error rates and product service history
Impact of modifications

Approaches to Software Reuse:
Product Service History (cont)

• Attributes
Service duration length
Change control during service
Proposed use versus service use
Proposed environment versus service environment
Number of significant modifications during service
 Hardware and software

Error detection and reporting capabilities
Number of in-service errors
Amount and quality of service history data
available and reviewed

FAA Activities Related to
Software Reuse

• “Software Approval Guidelines” Order,
Chap. 12: Reuse of software life cycle data

• Reusable Software Component Advisory
Circular (8110.RSC draft) – reuse of third
party components

• TSO for Integrated Modular Avionics (IMA)
Hardware Elements – TSO-C153

• IMA Advisory Circular – AC-145

• RTCA Special Committee #200

• Service History Handbook

• CAST Papers

• COTS Research Project

• OO Technology in Aviation Handbook

FAA Activities Related to
Software Reuse (cont)

Summary

• Reuse requires planning
• Techniques and tools exist to help

• Tips for success:
Obtain top level management support
Overcome non-technical inhibitors
Make reuse integral to development process
Focus on domain-specific components
Develop reuse guidelines and measurements

• Safety must be a priority
• FAA has several initiatives underway to enable reuse

For More Information

Leanna Rierson
Chief Scientific and Technical Advisor for
Aircraft Computer Software
FAA/AIR-106N
Leanna.Rierson@faa.gov

Barbara Lingberg
Software Program Manager
FAA/AIR-120
Barbara.Lingberg@faa.gov

Software Website: http://av-info.faa.gov/software

